

EECS 151: FPGA Lab
Final Project Report

RISC-V CPU and Audio Synthesizer

By Sukrit Arora and Rafael Calleja
[Team 30]

Project Functional Description and Design Requirements

The objective for this project is to create a RISC-V CPU with a 3-stage pipeline
(Instruction Fetch and Decode, Execute, and Memory Access / Write Back). This
processor is able to handle a subset of the instructions detailed in the RISC-V Green
Card that accounts for data and control hazards. The CPU has access to four distinct
pieces of memory: BIOS, for storing the base program, IMEM, for storing flashed
programs, DMEM, for storing CPU calculated data, and MMIO, for peripheral interaction,.
The CPU is also connected to a user I/O interface and synthesizer using memory
mapped I/O. The user interface involves reading both button and switch inputs on the
FPGA board and writing to the leds on the FPGA board. The synthesizer is a monophonic
subtractive synthesizer that is constructed using a numerically controlled oscillator and is
capable of producing four types of tones (sinusoidal, sawtooth, square, and triangular).
The audio output of the FPGA is achieved using a PWM DAC that operates at a
frequency (125 MHz) much higher than the CPU clock (50+ MHz).

Figure 1: The high-level datapath of the 3-stage RISC-V pipeline.

CPU Modules

Every large, nameable piece of the CPU (i.e. ALU, Control Unit, etc.) is broken down into
submodules. This practice of grouping each large, independent piece and smaller,
reusable pieces of the CPU into modules allowed for very readable and reusable code. In
the end, our ​Riscv151.v​ ​file contains almost nothing but wires and modules.

RISCV151-core:

- Control Unit
The Control Unit is the brain of the CPU. It takes in every instruction across the
pipelined stages as inputs and produces the control signals that dictate the flow of
data through the datapath. It computes logic for forwarding (data/control hazards),
mux selection (ASel, BSel, ALUSel, etc), branching and jumping and its
corresponding NOP injections, and memory and regfile write enabling.

- ALU
The ALU is simple and implements specific mathematical operations useful for
different instructions. Our ALU takes in an ALUSEL and the current rs1 and rs2
values and outputs the calculation based on these inputs. In order to map the
opcode to the specific instructions there is an ​alucode.vh ​ file that defines
constant we could refer to and use in multiple files.

- Branch Comp

The Branch Comp is probably the simplest piece of the CPU. It takes in a control
signal BrUn (whether the comparison is signed or not) and the current rs1 and rs2
values, and outputs BrEq and BrLt, the results of the comparison, to the control
unit.

- Regfile

The Regfile is a 2D register that holds 32 bits of data for each of the 32 registers.
It is synchronous write and asynchronous read so that we can write and read on
the same clock cycle.

- Immediate Generator

The immediate generator does exactly what it sounds like it would do: generates
the immediate from the instruction, and outputs the one corresponding to the
control signal from the control unit.

- Register
The Register module is a simple, clocked register. We created this submodule in
order to make the resulting Verilog code more readable and avoid having several
always @(posedge clk) ​ littering our code. This was useful not only for the pipeline
registers throughout the RISC151V-core code, but also when registers were
necessary for the CDC handshake and various other pipelining problems.

Memories

- BIOS/IMEM/DMEM/MMIO
The memory architecture of the RISC-V CPU is depicted in the figure below. The
BIOS is the foundation of the CPU and provides the initial instructions. The IMEM
provides a space to flash new programs onto the CPU. The DMEM provides a
space to store and load CPU calculated data. And, the MMIO is how the CPU
interacts with most peripherals. The BIOS/IMEM/DMEM files were provided in the
skeleton code, however MMIO is a new module created to be similar to the three
other memory modules except instead of a 2D-register memory space, the MMIO
interacts with off-CPU peripherals.

Figure 2: The memory architecture of the CPU.

- Load Decoder and Store Decoder

We created a Load and Store decoder to handle the reading and writing
respectively, of differently sized data (word, half-word, and byte) to and from
memory. Specifically, this made organizing the spec’s write enable mask for store
instructions more readable.

Non-CPU Modules

These modules were a bit harder to define as there was a lot of freedom in the
interpretation of the specification. Without skeleton code for many of these files, we
made a rough outline of which pieces (and sub-pieces) warranted making their own
module and which ones didn’t. In general, each block in the block diagrams of each
circuit were made into modules which ended up working nicely in cases such as the
FIFO ​ which were used in both the ​UART​ pipeline as well as the ​Button Parser
pipeline.

IO Circuits

- UART
The UART is how the off-board computer communicates with the PYNQ-Z1. It
implements asynchronous communication through a known baud rate and a
predetermined start and stop sequence. It primarily functions as a way for the
off-board computer to load programs to the CPU. This is achieved via a
hex_to_serial ​ script that tells BIOS where to place the instructions, placing
each instruction at its appropriate location.

- FIFO
Buffers inputs (generally key presses) such that rapid inputs can all be
registered. This is necessary to prevent dropped inputs from sources such
as ​hex_to_serial​ ​and keyboard.

- Button Parser

In order to consistently and accurately detect on-chip button presses the signal
that the buttons produce must be processed. We have to design input
conditioning circuits to handle metastability and button bounce.

- Synchronizer
Synchronizes the button press signal to the PYNQ-Z1’s clock frequency
using two shift registers.

- Debouncer
Filters the synchronous “glitchy” raw button presses that appear to a digital
circuit as multiple button presses. In order to deal with this problem we

create the debouncer only registers “saturated” button presses (presses
that last a certain number of clock cycles).

- Edge Detector
Filters the debounced button press to output only the posedge and
negedge transitions as single clock cycle pulses.

- FIFO
Much like the UART, buffers incoming signal to prevent dropped inputs.

Audio

- Synth
The synthesizer acts as the parent class to play tones from two sources: (1) a
software synth that writes MMIO-defined frequency values directly to the Digital to
Analog Converter (DAC) and (2) a hardware synth that uses a Numerically
Controlled Oscillator (NCO) that samples values from oscillatory functions through
LUTs.

- Pulse Width Modulation Digital to Analog Converter (PWM DAC)
This circuit maps a 12-bit input to a PWM signal with a duty cycle equal to
input[11:0]/(2^12 - 1)​. This controls the volume of our audio
through the PWM signal but also acts as a medium through which the
UART can play specific frequencies.

- Numerically Controlled Oscillator (NCO)
The NCO gives us the option of sampling values directly from common
oscillatory functions such as ​sin​, ​square​, ​sawtooth​, and ​triangle ​.
This allows us to input well-defined oscillatory functions into our DAC
whereas without it, the DAC would only be able to receive a square wave
function.

- Clock Domain Crossing (CDC) Handshake
The DAC runs at the PWM clock frequency (125MHz) in order to produce a
higher resolution output, however our PYNQ-Z1 runs at a much lower clock
frequency (50-60MHz). In order to resolve this problem, we use a CDC
handshake to ensure the chip signal successfully synchronizes to the PWM
clock frequency.

Figure 3: The Clock Domain Crossing circuit.

Figure 4: The Synthesizer circuit which incorporates both the Software (off-chip) and

Hardware (NCO) synthesizers.

Status and Results

Total LUTs Used: 3668 (6.89%)
Total SLICE registers used: 1716 (1.61%)

The operations described in the spec (assembly testbench, ISA-tests, mmult, user I/O
tests, square piano testbench, and NCO testbench) are all fully functional. The mmult
command resulted in a CPI of approximately 1.18.

We are able to run at 60 MHz in both simulation and synthesis (on-board). However,
pushing the clock frequency any further resulted in setup time violations. Our critical path
was a memory to memory path. We realized we could fix it by routing our memory
forwarding not directly from the MEM to EX stages, but rather from the MEM to IF/ID
stages (and NOPing appropriately), however we were not able to do so within the time
constraints of the project.

For the optimization component, we focused our efforts on mitigating unnecessary
resource utilization. We did this by combing through our ​make synth ​ logs and
refactoring our modules to optimize space and resources according to the suggestions
provided by the routing tools. This included reducing wire width to exclude unused bits,
deleting unused wires and registers, and ensuring no latches were inferred throughout
our code.

While we were able to get everything required in the specifications to work, we were not
able to finish working on some of the additional components such as further optimization
and synthesizer features. Specifically, we started to look into building the State Variable
Filter (SVF) for the synthesizer. Additionally, we started to take a look at a 2 bit dynamic
branch predictor, that would keep track of the number of consecutive times we took a
branch by keeping track with a counter. This would intuitively decrease our CPI as most
programs that take a branch several consecutive times would continue to do so (i.e.
for/while loops).

Conclusions

Working on this project has been an extremely gruelling yet rewarding experience. The
massive amount of successes (i.e. modularizing code, commenting code) and failures (i.e.
blocking vs. non-blocking, synchronous vs. asynchronous) we encountered through
writing Verilog code tested our skills both as hardware designers and software
engineers. Furthermore, reading and understanding the base specifications of the
project posed many challenges which became opportunities to learn more about
communication and interpretation.

While we learned many skills and concepts during this experience, the most valuable
lesson learned was familiarizing ourselves with the testing and debugging workflow in
Verilog. This included writing assembly and/or C code to send test instructions to our
CPU, creating a testbench for every module to test for expected inputs and outputs, and
looking at waveforms to check for timing and data inconsistencies in our datapath. These
lessons extend beyond the scope of this project and has been an insightful experience
of the day-to-day ventures of a systems engineer.

If we could go back and do it all again, the one thing we would change would be to do
more extensive unit testing. We assumed that our implementation of the basic blocks (i.e.
imm gen ​, ​mmio​) would work without needing to be rigorously tested. However, while
running integration tests, we realized we had overseen some edge cases that, had we
done more unit testing, could have been resolved earlier. Also, if possible, we would go
back in time with our current implementation, so that we could spend more time on the
equally interesting extra credit portions (i.e. optimization, SVF, ADSR, and polyphonic
synthesis) that we were unable to complete due to our timeline constraints.

