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Project Functional Description and Design Requirements 
 
The objective for this project is to create a RISC-V CPU with a 3-stage pipeline 
(Instruction Fetch and Decode, Execute, and Memory Access / Write Back). This 
processor is able to handle a subset of the instructions detailed in the RISC-V Green 
Card that accounts for data and control hazards. The CPU has access to four distinct 
pieces of memory: BIOS, for storing the base program, IMEM, for storing flashed 
programs, DMEM, for storing CPU calculated data, and MMIO, for peripheral interaction,. 
The CPU is also connected to a user I/O interface and synthesizer using memory 
mapped I/O. The user interface involves reading both button and switch inputs on the 
FPGA board and writing to the leds on the FPGA board. The synthesizer is a monophonic 
subtractive synthesizer that is constructed using a numerically controlled oscillator and is 
capable of producing four types of tones (sinusoidal, sawtooth, square, and triangular). 
The audio output of the FPGA is achieved using a PWM DAC that operates at a 
frequency (125 MHz) much higher than the CPU clock (50+ MHz). 
 

Figure 1: The high-level datapath of the 3-stage RISC-V pipeline.  



 

CPU Modules 
 
Every large, nameable piece of the CPU (i.e. ALU, Control Unit, etc.) is broken down into 
submodules. This practice of grouping each large, independent piece and smaller, 
reusable pieces of the CPU into modules allowed for very readable and reusable code. In 
the end, our ​Riscv151.v​ ​file contains almost nothing but wires and modules.  
 

RISCV151-core: 
 

- Control Unit 
The Control Unit is the brain of the CPU. It takes in every instruction across the 
pipelined stages as inputs and produces the control signals that dictate the flow of 
data through the datapath. It computes logic for forwarding (data/control hazards), 
mux selection (ASel, BSel, ALUSel, etc), branching and jumping and its 
corresponding NOP injections, and memory and regfile write enabling. 
 

- ALU 
The ALU is simple and implements specific mathematical operations useful for 
different instructions. Our ALU takes in an ALUSEL and the current rs1 and rs2 
values and outputs the calculation based on these inputs. In order to map the 
opcode to the specific instructions there is an ​alucode.vh ​ file that defines 
constant we could refer to and use in multiple files. 

 
- Branch Comp 

The Branch Comp is probably the simplest piece of the CPU. It takes in a control 
signal BrUn (whether the comparison is signed or not) and the current rs1 and rs2 
values, and outputs BrEq and BrLt, the results of the comparison, to the control 
unit. 

 
- Regfile 

The Regfile is a 2D register that holds 32 bits of data for each of the 32 registers. 
It is synchronous write and asynchronous read so that we can write and read on 
the same clock cycle. 
 
 
 
 

- Immediate Generator 



 

The immediate generator does exactly what it sounds like it would do: generates 
the  immediate from the instruction, and outputs the one corresponding to the 
control signal from the control unit. 
 

- Register 
The Register module is a simple, clocked register. We created this submodule in 
order to make the resulting Verilog code more readable and avoid having several 
always @(posedge clk) ​ littering our code. This was useful not only for the pipeline 
registers throughout the RISC151V-core code, but also when registers were 
necessary for the CDC handshake and various other pipelining problems. 

 

Memories 
 

- BIOS/IMEM/DMEM/MMIO 
The memory architecture of the RISC-V CPU is depicted in the figure below. The 
BIOS is the foundation of the CPU and provides the initial instructions. The IMEM 
provides a space to flash new programs onto the CPU. The DMEM provides a 
space to store and load CPU calculated data. And, the MMIO is how the CPU 
interacts with most peripherals. The BIOS/IMEM/DMEM files were provided in the 
skeleton code, however MMIO is a new module created to be similar to the three 
other memory modules except instead of a 2D-register memory space, the MMIO 
interacts with off-CPU peripherals. 
 

 
Figure 2: The memory architecture of the CPU. 



 

 
- Load Decoder and Store Decoder 

We created a Load and Store decoder to handle the reading and writing 
respectively, of differently sized data (word, half-word, and byte) to and from 
memory. Specifically, this made organizing the spec’s write enable mask for store 
instructions more readable.   



 

Non-CPU Modules 
 
These modules were a bit harder to define as there was a lot of freedom in the 
interpretation of the specification. Without skeleton code for many of these files, we 
made a rough outline of which pieces (and sub-pieces) warranted making their own 
module and which ones didn’t. In general, each block in the block diagrams of each 
circuit were made into modules which ended up working nicely in cases such as the 
FIFO ​ which were used in both the ​UART​ pipeline as well as the ​Button Parser 
pipeline. 
 

IO Circuits 
 

- UART 
The UART is how the off-board computer communicates with the PYNQ-Z1. It 
implements asynchronous communication through a known baud rate and a 
predetermined start and stop sequence. It primarily functions as a way for the 
off-board computer to load programs to the CPU. This is achieved via a 
hex_to_serial ​ script that tells BIOS where to place the instructions, placing 
each instruction at its appropriate location. 
 

- FIFO 
Buffers inputs (generally key presses) such that rapid inputs can all be 
registered. This is necessary to prevent dropped inputs from sources such 
as ​hex_to_serial​ ​and keyboard. 

 
- Button Parser 

In order to consistently and accurately detect on-chip button presses the signal 
that the buttons produce must be processed. We have to design input 
conditioning circuits to handle metastability and button bounce. 
 

- Synchronizer 
Synchronizes the button press signal to the PYNQ-Z1’s clock frequency 
using two shift registers. 
 

- Debouncer 
Filters the synchronous “glitchy” raw button presses that appear to a digital 
circuit as multiple button presses. In order to deal with this problem we 



 

create the debouncer only registers “saturated” button presses (presses 
that last a certain number of clock cycles). 
 

- Edge Detector 
Filters the debounced button press to output only the posedge and 
negedge transitions as single clock cycle pulses. 
 

- FIFO 
Much like the UART, buffers incoming signal to prevent dropped inputs. 

 

Audio 
 

- Synth 
The synthesizer acts as the parent class to play tones from two sources: (1) a 
software synth that writes MMIO-defined frequency values directly to the Digital to 
Analog Converter (DAC) and (2) a hardware synth that uses a Numerically 
Controlled Oscillator (NCO) that samples values from oscillatory functions through 
LUTs. 
 

- Pulse Width Modulation Digital to Analog Converter (PWM DAC) 
This circuit maps a 12-bit input to a PWM signal with a duty cycle equal to 
input[11:0]/(2^12 - 1)​. This controls the volume of our audio 
through the PWM signal but also acts as a medium through which the 
UART can play specific frequencies. 
 

- Numerically Controlled Oscillator (NCO) 
The NCO gives us the option of sampling values directly from common 
oscillatory functions such as ​sin​, ​square​, ​sawtooth​, and ​triangle ​. 
This allows us to input well-defined oscillatory functions into our DAC 
whereas without it, the DAC would only be able to receive a square wave 
function. 
 

- Clock Domain Crossing (CDC) Handshake 
The DAC runs at the PWM clock frequency (125MHz) in order to produce a 
higher resolution output, however our PYNQ-Z1 runs at a much lower clock 
frequency (50-60MHz). In order to resolve this problem, we use a CDC 
handshake to ensure the chip signal successfully synchronizes to the PWM 
clock frequency. 
   



 

 
Figure 3: The Clock Domain Crossing circuit. 

 

 
Figure 4: The Synthesizer circuit which incorporates both the Software (off-chip) and 

Hardware (NCO) synthesizers.   



 

Status and Results 
 
Total LUTs Used:  3668 (6.89%) 
Total SLICE registers used:  1716 (1.61%) 
 
The operations described in the spec (assembly testbench, ISA-tests, mmult, user I/O 
tests, square piano testbench, and NCO testbench) are all fully functional. The mmult 
command resulted in a CPI of approximately 1.18.  
 
We are able to run at 60 MHz in both simulation and synthesis (on-board). However, 
pushing the clock frequency any further resulted in setup time violations. Our critical path 
was a memory to memory path. We realized we could fix it by routing our memory 
forwarding not directly from the MEM to EX stages, but rather from the MEM to IF/ID 
stages (and NOPing appropriately), however we were not able to do so within the time 
constraints of the project. 
 
For the optimization component, we focused our efforts on mitigating unnecessary 
resource utilization. We did this by combing through our ​make synth ​ logs and 
refactoring our modules to optimize space and resources according to the suggestions 
provided by the routing tools. This included reducing wire width to exclude unused bits, 
deleting unused wires and registers, and ensuring no latches were inferred throughout 
our code. 
 
While we were able to get everything required in the specifications to work, we were not 
able to finish working on some of the additional components such as further optimization 
and synthesizer features. Specifically, we started to look into building the State Variable 
Filter (SVF) for the synthesizer. Additionally, we started to take a look at a 2 bit dynamic 
branch predictor, that would keep track of the number of consecutive times we took a 
branch by keeping track with a counter. This would intuitively decrease our CPI as most 
programs that take a branch several consecutive times would continue to do so (i.e. 
for/while loops).   



 

Conclusions 

 
Working on this project has been an extremely gruelling yet rewarding experience. The 
massive amount of successes (i.e. modularizing code, commenting code) and failures (i.e. 
blocking vs. non-blocking, synchronous vs. asynchronous) we encountered through 
writing Verilog code tested our skills both as hardware designers and software 
engineers. Furthermore, reading and understanding the base specifications of the 
project posed many challenges which became opportunities to learn more about 
communication and interpretation.  
 
While we learned many skills and concepts during this experience, the most valuable 
lesson learned was familiarizing ourselves with the testing and debugging workflow in 
Verilog. This included writing assembly and/or C code to send test instructions to our 
CPU, creating a testbench for every module to test for expected inputs and outputs, and 
looking at waveforms to check for timing and data inconsistencies in our datapath. These 
lessons extend beyond the scope of this project and has been an insightful experience 
of the day-to-day ventures of a systems engineer. 
 
If we could go back and do it all again, the one thing we would change would be to do 
more extensive unit testing. We assumed that our implementation of the basic blocks (i.e. 
imm gen ​, ​mmio​) would work without needing to be rigorously tested. However, while 
running integration tests, we realized we had overseen some edge cases that, had we 
done more unit testing, could have been resolved earlier. Also, if possible, we would go 
back in time with our current implementation, so that we could spend more time on the 
equally interesting extra credit portions (i.e. optimization, SVF, ADSR, and polyphonic 
synthesis) that we were unable to complete due to our timeline constraints. 

 
 

 


