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1 Introduction

Music is an art form and creative expression central to our human experience. Bach,

Mozart, Michael Jackson and other music revolutionaries have all blessed us with their

compositions, evolving their genres and inspiring new ones. While we were only fortunate

enough to be exposed to their brilliance for dismally short amounts of time, what if we can

reproduce a central repository of their musical prowess using their past productions? Better

yet, what if we can use this repository to produce original music mimicking the sounds of

the greats?

In our endeavor to reproduce musical genius and immortalize our favorite musicians

and genres, we have captured several common stylistic elements and themes across compo-

sitions from the same artist and/or sub-genres. We analyze factors/variables of songs like

musical notes, loudness, and duration; this information is encoded into a Markov Chain

model to approximate the songs. A simple random walk along this Markov chain produces

fascinating results that come close to passing off as original, human-made music!

2 Methods

We used MIDI files as a resource to build our Markov Chains (MC) by analyzing the

aforementioned variables: the states of the MC were built using a combination of musical

notes and their duration in different tracks on a single MIDI file, and the transition proba-

bilities were determined based on the note progressions found in our input MIDI files. For

example, if the following progression occurs frequently in a given song - note A plays for
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100ms, and note B plays immediately after for 50ms - then we would have two states (‘note

A for 100ms’, ‘note B for 50ms’), and we’d have a high transition probability from the former

to the latter. Thus, based on the input songs we use to build/train our MC, we can generate

songs that are thematically similar.

We simplified the complexity of our state space by approximating note durations to

the nearest multiple of 25ms (so if in the original input file, we have note A for 62ms, this

would be treated as the occurrence of a ‘note A for 50ms’ state). This assumption greatly

reduced the sparsity of our MC and improved the variety of chord progressions occuring as

we took random walks, while losing a minimal amount of data.

3 Experiments

MIDI files are composed of several tracks, where each track represents a singular instru-

ment in the musical piece. For example, a song could comprise of tracks with two pianos and

a drum set, and in such a case, a MIDI file would have three tracks, one for each instrument.

Initially, we only experimented on songs with a single track and built a standard MC (as

mentioned above), where the states were represented as tuples of notes and their duration.

In each experiment, the MC was only trained on one song (from either our classical or video

game music library), and new songs were generated via random walks.

We added further depth and complexity to our productions by exploring songs with

multiple tracks. To accommodate multiple tracks in our songs, we began representing our

MC states as a tuple containing sub-tuples and a duration value, with one sub-tuple per

track. Each sub-tuple contains all the notes from its track that are being played at this

state. For example, if at a given state we have track 1 playing notes A and B, and track

2 playing notes C and D, all for a duration of 200 ms, we would have a state represented

as ((A,B), (C,D), 200). We first trained the MCs on multi-track songs, one song at a time.

We added yet further complexity by training on multiple multi-track songs belonging to the

same genre, and to different genres.
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4 Results/Analysis

For our simple initial experiments, where we trained on just one single-track song, we

were quite successful at generating new stylistically similar music. The generated files clearly

shared the stylistic elements of the songs they were based on (for example, a generation from

a simple ‘Row Your Boat’ tune had the same notes and similar note progressions, mixed

in a new order). Generations from longer and more complex single-track songs like ‘Clair

de Lune’ came out significantly different from the source material, yet retained several style

elements. Some generations sounded like little more than a random shuffle of notes, while

others were actually surprisingly pleasing to listen to. These results were consistent across

songs from both classical and video game genres.

Our generations from multi-track songs did indeed capture the increased sophistica-

tion of chord progressions present across the different tracks, but were certainly more prone

to ‘random’ sounding note progressions. In all, we explored themes in Classical and Video

game music and even gave EDM music a shot. EDM music was a little more complex than

the rest as its songs had a very high number of tracks, which together produced a less harmo-

nious MC that at times made generated songs sound quite disjoint. This could be attributed

to the bass-heavy and curt nature of EDM music and the many different instruments present

in these songs, whereas the other two genres/themes are more constrained in the variety of

instruments used in the songs, making the transition probability matrix of the MC less com-

plex and more harmonious. Finally, training our MC with just a single input song made

significantly more pleasing music than when training on multiple songs. This is because the

input songs were all already pleasing to listen to, so only training on one in isolation better

fit the random walk to the patterns present in the song, while training on multiple songs

mixed these patterns together to varying degrees and produced a less satisfying output. This

phenomenon was especially apparent in our training on multiple songs across genres.

To summarize, there was a clear correlation between less complex songs and higher-

quality generations. Our generations were at times genuinely quite pleasing, and certainly
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captured several of the stylistic elements of the songs they were based on. As our training

song complexity increased, the quality of the generations suffered, as the MC model was less

able to capture this complexity. A major factor contributing to this was our design of the

next note+duration state in the random walk being only determined on the immediately

preceding note+duration state. By instead using a larger number of preceding states in

both training and generation, we could potentially improve the quality of our generations.

This could be implemented with a MC containing a much higher amount of states, where

these states now represent a sequence of note+duration tuples (rather than just a single

note+duration tuple in the current architecture).

5 Discussion/Limitations

There were several issues we ran into while implementing our project. The first was

inconsistency in the structure of training data. While MIDI is a standard format, the notes

in the MIDI file do not conform to a single format. As a result, we had to manually look

through the contents of a set of MIDI files to look for patterns in the overall structure.

Fortunately, we were able to classify most MIDI files into two groups: files that toggled

notes using either on-off commands or using a velocity variable. Accordingly, we wrote two

different file parsers, one to handle each note structure.

Another limitation we saw with our random song generation was that the random

walk very clearly retained the characteristics of the data we trained on. This worked well for

training on a single file, but produced muddled results when trained on multiple files; but

this is understandable since each song works with different notes and durations. Ultimately,

by mixing the composing styles and keys of different artists, our results were very interesting:

not terrible, but not very organic either.

All this leads to a larger limitation of the overall project. Music is inherently not

random. The first step a musician takes while composing music is picking a key and envision-

ing a general structure of chord progressions followed by considering melodies to use. These
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melodies are the motifs and themes that turn up repeatedly in music and are inscribed into

memory. Musicians then add all the other intricacies of music: volume, speed, style which

are followed by another layer of uniqueness that is inherent to each composer. These layers

are pretty hard to capture within one song. The markov chain does make an admirable

approximation of it, but in our attempts to train on multiple songs, these intricacies are lost

and the resulting random walks sound disjoint. Thus, while this project was fascinating to

work on and a great approximation for a single training set and style, it doesn’t work very

well when generalized to multiple song training set with different styles.
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